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Time dependent recovery of oriented

polyethylene
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IRC in Polymer Science and Technology, The University of Leeds, Leeds, LS2 9JT
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The recovery behaviour after creep of oriented linear polyethylenes has been studied over
the temperature range 20–60 ◦C. A range of samples was examined to identify the influence
of draw ratio and molecular weight. It has been shown that in spite of significant differences
in recovery strain level, the recovery kinetics are not affected over a wide range of the
structural variations and experimental conditions. It is concluded that the time dependent
recovery behaviour is consistent with a model where two thermally activated processes are
acting in parallel. More exact values for the activation parameters for both processes of the
model have been obtained by taking into account the time dependent distribution of the
applied stress between these two processes. C© 1999 Kluwer Academic Publishers

1. Introduction
In a number of previous publications from this labora-
tory [1–3] the plastic flow creep as well as the visco-
elastic creep behaviour of oriented polyethylene (PE)
have been described in considerable detail. The main
conclusion of these investigations is that the total creep
behaviour of oriented linear PE, including the initial
time dependent behaviour, can be described very satis-
factorily by a model in which two thermally activated
processes, each in series with an elastic element, are
assumed to act in parallel.

The aim of the present paper is to examine the va-
lidity of this model for the time dependent recovery
behaviour, on the assumption that the kinetics of creep
and recovery should be described by the same set of pa-
rameters. With significant simplification of this initial
model for the case of recovery, the recovery kinetics
can be easily modelled analytically and some of the
parameters of the total model can be calculated from
the fitting of the experimental data. However, analyti-
cal equations can only be obtained for both creep and
recovery behaviour at low applied stresses. It also has
to be emphasised that the simple two-process model
should be regarded only as a semi-quantitative model
to provide physical insight into the deformation mech-
anisms. For a precise description of the viscoelastic
behaviour, a distribution of relaxation times would be
required and the finite value of the loading time should
also be taken into account.

2. Experimental
Samples were prepared from two commercial grades of
linear polyethylene with different molecular weights,
BP 6007 and BP H020 manufactured by BP Chemicals
Ltd. Sample information is summarised in Table I. Tape
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samples A-1 and A-2 were cut from sheets quenched
after compression moulding and then drawn to different
draw ratios at different temperatures in an Instron ten-
sile test machine fitted with a high temperature oven.
Because there was significant scatter in the mechan-
ical behaviour of tapes in the creep experiments the
monofilament samples B, C-1 and C-2 were prepared
by melt spinning using standard extrusion techniques
and then drawn in either one or two stages in a con-
tinuous process to fixed draw ratios. All samples were
annealed in air at (115±5)◦C for 20 h and then cooled
slowly to room temperature in order to stabilise their
structure. Further experiments showed that there is no
qualitative affect of the sample preparation procedures
on the creep and recovery behaviour.

The creep and recovery measurements were made at
temperatures of 20, 40 and 60◦C using a standard dead-
loading creep apparatus in which the deformation was
measured by grip displacement. Details of the apparatus
and experiments have been given elsewhere [4]. The
recovery data were obtained after various creep times
for several levels of applied stress. The duration of the
recovery tests was at least 105 s (∼30 h) and the sample
strain after this test was considered as residual.

3. Results and discussion
Sherby-Dorn plots [5] describing creep strain rate as a
function of creep strain are probably the most instruc-
tive method of graphical presentation for the tensile
creep experiments. The initial monotonically declining
part of the plot corresponds to the viscoelastic response
of the material, while permanent deformation is clearly
associated with the appearance of a plateau (Fig. 1). For
analysis of the kinetics of creep and recovery, however,
a plot of strain rate versus time is more informative. In
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TABLE I Sample information

Polymer Draw ET

Sample grade Mw/1000 Mn/1000 ratio (GPa) Comments

A-1 6007 131 19 7 4.8 Drawn at 20◦C
A-2 6007 131 19 12 9.2 Drawn at 75◦C
B 6007 131 19 9 13.7 Drawn at 90◦C
C-1 H020 312 33 9 15.8 Drawn at 90◦C
C-2 H020 312 33 20 38.6 C-1 drawn

at 120◦C

Figure 1 Sherby-Dorn plots for: (h) sample A-1,σ appl=100 MPa; (1)
sample B,σ appl=33 MPa; (¥) sample C-2,σ appl=200 MPa.

this presentation, the immediate elastic component of
deformation, which is not experimentally measured, is
excluded from consideration. In this case (Fig. 2), linear
viscoelastic behaviour is described by a straight line on
the log (strain rate) versus log (time) plot and the plastic
flow component produces the deviation from linearity.

The evidence from experimental observations is that
in the range where linear viscoelasticity applies, all the
samples show complete recovery on unloading and the
time dependence of the recovery strain rate is the same
as the creep strain rate. The first aim of the present study
was therefore to determine the affect of the presence of
any plastic deformation on the recovery behaviour. It
was found that the deviation from linear viscoelastic-
ity in the creep experiment could be produced in two
ways: first by applying higher stress and secondly by
increasing the loading time even at relatively low ap-
plied stress. The effect of loading conditions was stud-
ied in some detail on the sample A-1 and recovery data
at room temperature were obtained after various creep
times from 30 to 4×105 s for several applied stresses in
the range from 40 to 150 MPa. Fig. 3 shows that neither
the applied stress value nor the loading time affect the
recovery strain rate behaviour. It was also found, rather

Figure 2 Log(creep strain rate) against log(time) plots at room temper-
ature for: (h) sample A-1,σ appl=100 MPa; (1) sample B,σ appl=33
MPa; (¥) sample C-2,σ appl=200 MPa.

Figure 3 Effect of applied stress and loading time on the recovery after
creep for sample A-1: (a)σ appl=60 MPa, loading time: (¤) 30 s, (x)
104 s, (N) 105 s; (b)σ appl=80 MPa, loading time: (¥) 103 s, (♦) 104

s, (H) 106 s; (c)σ appl=100 MPa, loading time: (̈) 102 s, (h) 103 s,
(1) 104 s; (- - - -) apparent linear fit by lg(˙ε)=−2lg(time)−1.1.
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surprisingly, that repeating these tests for the samples
B and C at various temperatures produced no signifi-
cant differences in behaviour. In all cases the recovery
data as well as the linear creep strain rates are fitted
very well by the straight line lg( ˙ε)= c+d · lg(t), where
c=−1.1, d=−2.0. The recovery of sample A-1 at the
low applied stress (Fig. 3a) after a very short creep time
(30 s) slightly differed quantitatively from the general
recovery behaviour of the other samples.

The recovery behaviour of oriented semicrystalline
polymers after the removal of an applied load is as-
sociated mainly with the recovery of non-crystalline
interfibrillar regions, which are essentially a stretched
molecular network. The existence of a molecular net-
work in oriented PE has been confirmed by measure-
ments of thermal expansion [6] and shrinkage force [7].
In the simplest theoretical interpretation of the network
stress-extension behaviour [8] the internal stress,σ , is
related to the network chain densityN and the extension
ratioλ, by the relationship

σ ∼ NkT(λ2− λ−1) (1)

wherek is Boltzmann’s constant andT the absolute
temperature. One would therefore expect changes in
the kinetics of recovery if the structure of the network
is changed. According to Equation 1, one of the ways
to change the properties of the interfibrillar material
is to change the molecular orientation in the sample
by changing the draw ratioλ. Samples C-1 and C-2
with two very different draw ratiosλ were therefore
examined in an attempt to determine the effect of ori-
entation on recovery behaviour (Fig. 4). Unexpectedly,
over the wide range of draw ratios studied, all the sam-
ples showed very similar behaviour in terms of recov-
ery strain rate as a function of time. As in the case of
the various creep conditions for the samples A-1, A-2
and C the recovery can be described by a straight line
with the same coefficients. Even the isotropic sample
A (λ=1) demonstrates the same recovery behaviour
after low stress creep.

Two other parameters also affecting the stress-
extension behaviour of intrafibrillar network are the
network chain density,N and the absolute tempera-

Figure 4 Effect of draw ratio on log(recovery strain rate) against
log(time) for sample A:(N) λ=1; (•) λ=8; (¥) λ=15; (- -¤- -) ap-
parent linear fit.

Figure 5 Effect of molecular weight on log(recovery strain rate) against
log(time): (¥) sample B,t =60◦C; (1) sample C-1,t =60◦C.

Figure 6 Effect of temperature on log(recovery strain rate) against
log(time) for sample A-1: (¥) t =60◦C, creep time 1.5×105 s; (¤)
t =40◦C, creep time 6×104 s; (N) t =40◦C; (×) t =60◦C.

ture of experiment,T . The first parameter relates to the
molecular weight of polymer and would be expected to
be identified by a comparison of the recovery behaviour
of samples B and C after creep under similar condi-
tions. It was therefore surprising that neither molecular
weight nor temperature causes any significant change
in the recovery kinetics (Figs 5 and 6).

It appears from these results that the elastic compo-
nent of the polymer network does not affect the time-
dependent recovery behaviour of oriented PE. How-
ever, the recovery of the network also depends on a
viscous component of deformation, which is associ-
ated mostly with chain slip processes, in which the
molecules slide past each other parallel to their length.
In phenomenological terms the origin of viscous flow
is the movement of macromolecule segments relative
to each other and can be described by the activation
parameters of a thermally activated process. It seems
plausible that creep and recovery are to be considered
as one continuous process: loading, creep, unloading,
recovery. We apply the two-process model (Fig. 7a) to
elucidate the apparent insensitivity of the recovery ki-
netics of oriented PE to sample structure and creep con-
ditions. All the elements of the model are involved in the
response of the system at loading and during the creep
but the stiffness of the springs defines mainly the initial
distribution of the applied stress between the arms of
the model. The stress in each arm is then determined
by the relative viscosities of the dashpots. If the values
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Figure 7 Models of mechanical behaviour: (a) two-process; (b) standard
linear solid; (c) model for recovery after creep.

of the two viscosities differ significantly, at low applied
stress the stress in one of the arms will be low enough
to neglect any dashpot deformation in this arm. In this
case the initial model (Fig. 7a) can then be simplified to
the model shown in Fig. 7b, well-known as the standard
linear solid.

The standard linear solid provides a good first order
description of creep behaviour in polymers, where the
low initial creep compliance is described by the stiff
springE1 acting in parallel with the soft springE2, and
as the flow in the dashpot occurs, the final ‘relaxed’
creep compliance is reached which is determined only
by the magnitude of the soft springE2. An essential fea-
ture of the standard linear solid representation is that
the kinetics of creep and recovery are more tractable
mathematically [3]. It is also compatable with the two
process model of Fig. 7a. Unloading both the two pro-
cess model and the standard linear solid involves the
instantaneous recovery of the stiff springE1. The dash-
potV2 in the opposite arm of the model can therefore be
removed from consideration of the recovery behaviour.
Essentially, only two elements of the initial model, the
spring E2 and the dashpotV1, are involved in the re-
covery response which is then described by the model
of Fig. 7c.

Thus from the viewpoint of describing recovery, it
is immaterial which of the models shown in Fig. 7 is
used for the description of creep. Moreover, whether it
is the complete recovery after low stress creep, or the
partial recovery after permanent flow creep, only the

activation parameters of the dashpot 1 can be calculated
from recovery data.

As mentioned above, the first stage is loading with
an applied stressσ appl. If the time of loading is short
compared with the shortest sample relaxation time it
is possible to use the assumption that the initial stress
distribution is defined by the spring stiffnesses. We call
this the instantaneous loading approximation. This as-
sumption is reasonable for the all experiments to be
described. Then, the initial stresses in each arm (i.e. at
the momentt =0) are proportional to the applied stress
and the modulus of the spring:

σ
creep
1 (0)= σ applE1

E1+ E2
, σ

creep
2 (0)= σ applE2

E1+ E2
, (2)

To describe the response of the material after loading,
the time dependence of stress in each of the arms of the
model should be known. However, exact (analytical)
expressions for instantaneous stresses during creep can
be obtained only for the low applied stress range [3]:

σ
creep
1 (t) = 2kT

V1
a tanh{exp(δ1− t/γ1)}

(3)

σ
creep
2 (t) = σ appl− 2kT

V1
a tanh{exp(δ1− t/γ1)}

where

δ1 = ln tanh

(
V1σ

creep
1 (0)

2kT

)
, γ1 = kT

ε̇′01EV1
,

E = E1E2

E1+ E2

The equation for the time dependent creep strain of
the standard linear solid can be obtained as described
previously (see Equation 5 in Ref. [3])

εcreep(t) = a

b
+ 1

b
ln[ f (t)] (4)

where

a = σ applV1

kT
, b = E2V1

kT
,

f (t) = 1− exp[−b(At + k)]

1+ exp[−b(At + k)]

in which

K = −1

b
ln

[
1− G

1+ G

]
, G = exp

[
bσ appl

E1+ E2
− a

]
,

A =
(

E1

E1+ E2

)
ε̇′01

and the creep strain rate is

ε̇creep(t) = σ̇
creep
2 (t)

E2
= ε̇′01E1

E1+ E2
[sinh{δ1− t/γ1}]−1

(5)

Following the presentation of the recovery model
(Fig. 7c) the value of instantaneous recovered strain
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(elastic recovery) is therefore determined by the defor-
mation of spring 1 at the last momenttc of loading:

εrec(0)= σ
creep
1 (tc)

E1
= σ appl− σ creep

2 (tc)

E1
(6)

The initial stress for the recovery process in arm 2 is
then

σ rec
2 (0)= σ creep

2 (tc)− εrec(0)E2

= σ appl− σ creep
1 (tc)

[
1+ E2

E1

]
(7)

and the time dependence of the recovery stress is:

σ rec
2 (t) = −σ rec

1 (t) = 2kT

V1
a tanh{exp(δ2− t/γ2)} (8)

where

δ2 = ln tanh

(
V1σ

rec
2 (0)

2kT

)
, γ2 = kT

ε̇′01E2V1

The recovery strain of dashpot 1 as well as spring 2,
corresponding to this stress is

εrec
2 (t) = σ rec

2 (t)

E2
= 2kT

V1E2
a tanh{exp(δ2− t/γ2)} (9)

Finally the relationship for the recovery strain rate as a
function of time can be obtained simply by differenti-
ating the expression (9) forσ rec

2 (t):

ε̇rec(t) = σ̇ rec
2 (t)

E2
= ε̇′01[sinh(δ2− t/γ2)]−1 (10)

It was shown previously [1] that the main feature of
the recovery behaviour is that after creep below some
critical value of applied stress, complete recovery is
observed. In particular, the model in Fig. 7c predicts
complete recovery with a retardation time:

τ = η1

E2

The experimentally determined recovery kinetics show
that the system described by the model 5c has the same
retardation time for various combinations of parameters
E1, E2, ε̇′01, V1 which reflect the differences in structure.
One can see easily from Fig. 8 and Equation 8 that the

Figure 8 Distribution of applied stress in arms of the standard linear
solid at creep: (¤) arm 1, (¥) arm 2.

stress in dashpot 1 during recovery is very low and then
in the low stress approximation (i.e. ifσV/kT¿1)

sinh

(
σV

kT

)
≈ σV

kT
(11)

Hence the viscosity of interfibrillar network is given by

η1 = σ

ε̇
≈ kT

ε̇′01V1
(12)

The recovery time is then

τ = η1

E2
= kT

ε̇′01V1E2
(13)

which is exactly the coefficientγ2 describing the time
dependence of the recovery strain rate in Equations 9
and 10.

Thus there are four equations to fit the low stress
experiments (i.e. for the case of complete recovery)
for the creep strain (4), creep strain rate (5), recovery
strain (9) and recovery strain rate (10) vs. time. The fit
has been performed using a non-linear curve fit with
the simplex search method [9] and the parametersE1,
E2, ε̇′01, V1 were obtained as a result of the best fit
under the constraintE1+ E2= ET, where ET is the
sample modulus calculated as the slope of an initial
part of stress-strain curve. The initial estimates of the
activation parameters have been taken from fitting the
plateau creep strain rate as a function of applied stress.
Some examples of the fit are presented in Figs 9 and 10

Figure 9 Fitting of creep strain against log(time) for sample B at various
temperatures: (¥) t =20◦C; (¤) t =40◦C; (N) t =60◦C.

Figure 10 Fitting of recovery strain against log(time) at room temper-
ature for: (•) sample C-2,σ appl=100 MPa; (¤) sample C-1,σ appl=
33 MPa.
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TABLE I I Fitted parameters to the recovery and the recoverable creep
model

T σ appl ε̇′01 V1 E1 E2 τ = η1/E2

Sample (◦C) (MPa) (s−1) (nm3) (GPa) (GPa) (s)

A-1 20 30 8.0×10−12 1.6 4.0 0.8 3.94×108

A-2 20 30 7.0×10−12 1.2 8.0 1.2 4.01×108

B 20 33 2.1×10−12 3.25 12.0 1.65 3.59×108

B 40 32 2.2×10−12 4.4 10.0 1.25 3.57×108

B 60 33 2.7×10−12 4.8 7.0 1.05 3.38×108

C-1 20 33 3.0×10−12 3.0 14.5 1.3 3.46×108

C-2 20 100 1.2×10−12 1.1 30.0 8.6 3.56×108

and the values of the fitting parameters obtained from
the fitting described above are shown in Table II.

Values for the activation parameters of the two-
process model for the materials studied here have been
reported previously [1, 2]. Those values were based on
the equilibrium creep rates in the low stress range. The
values for the activation volume of the interfibrillar net-
work,V1 presented here (Table II) are much higher than
in previous papers (V1∼0.5 nm3). The first point to
note is that the earlier estimates ofV1 were made on
the assumption that the stress in arm 1 is equal to the
total applied stress. In the present study the time depen-
dent distribution of applied stress between the arms of
the model is taken into account and as can seen from
Fig. 8, at long creep times, arm 1 holds only about
one-third of the applied stress. The previously reported
values ofV1 [1, 2] were therefore too low because the
stress values used in the equation for the Eyring dashpot
strain rate were overestimated. It has to be concluded,
therefore, that the values ofV1 obtained here are more
correct. In a previous paper [3] an attempt was made
to describe the time-dependence of the creep and stress
relaxation behaviour of highly oriented PE. A different
model was adopted and different values forV1 were
obtained. These were smaller than the values obtained
in the present study and in the other previous papers
[1, 2] and were associated with a crystal process, in
contradiction to the conclusions here.

Although the analysis of the recovery kinetics does
not allow calculation of the activation parameters for
the other thermally activated process described by ˙ε′02
andV2, if the values of ˙ε′01 andV1 have been obtained,
the stress in arm 1 can be calculated for the equilibrium
creep. Then the parameters of the second process can
be calculated on the basis of the experimental data for
the equilibrium creep rate as a function of the stress in
arm 2. Again, as for the case ofV1, this approach gives
more exact values forV2 because the stress distribution
is taken into account. For example, for the sample A-1
the values of the pre-exponential factor ˙ε′02 and the ac-
tivation volumeV2 obtained following this more exact
approach are 3×10−7 s−1 and 0.16 nm3, respectively,
compared with 3×10−7 s−1 and 0.10 nm3 from cal-
culations on the basis of the dependence of the plateau
creep strain rate on applied stress.

Next to be noted is the different relationship between
the values of the elastic parametersE1 and E2 be-
tween the present and previous calculations. Although
it was stated in paper [3] that the springs have the same

significance as in the two-process model, the relative
values ofE1 and E2 obtained there are in contradic-
tion to the present results. First, if it is assumed that
E1< E2 there is not even qualitative similarity to the
present experimental data when the fitting procedure
is performed. Only ifE1> E2 do the Equations 5 and
10 produce a straight line for both the creep and re-
covery kinetics on the log(strain rate) versus log(time)
plot. Comparison of the stress relaxation and recovery
kinetics for these samples also suggests thatE1> E2.
In terms of the standard linear solid model, recovery
from creep occurs due to the energy stored in spring 2
whereas in stress relaxation the same dashpot is driven
mostly by spring 1. Experimental results to be reported
separately [10] for the stress relaxation strain rate show
that stress relaxation in oriented PE occurs several times
faster than recovery. Hence, spring 1 must be stiffer than
spring 2, in good agreement with the present results.

Because process 2 is mainly associated with the crys-
talline phase, one would expect that the modulus of
the spring in arm 2 should be higher than the modulus
of spring 1, i.e. the interfibrillar network. However, as
mentioned above, all attempts to fit the data using other
combinations of parameters (E1< E2 or E1≈ E2) have
been unsuccessful. It is concluded therefore that for
the oriented material, arm 2 in the two process model
should be associated with a microfibril, which is the ba-
sic element of the structure of oriented semicrystalline
polymers. Following previous interpretations, the ac-
tivation volumeV2 is consistent with a crystalline de-
formation mechanism such as the propagation of de-
fects through the crystallites while the modulusE2 is
consistent with the elasticity of the intrafibrillar non-
crystalline regions. As for the comparatively low value
of the microfibril modulusE1, it has been shown by Za-
itsevet al.[11] that the initial modulus of the microfibril
in oriented PE is much lower than the crystal modulus.

Following Equation 13, the time dependent recovery
of oriented PE is mainly determined by the properties
of two distinct non-crystalline regions. The higher the
elasticity of the intrafibrillar material and the lower the
viscosity of the interfibrillar network, the faster the ma-
terial recovers. It appears, however, that over the wide
range of structures and experimental conditions stud-
ied here, it is very unlikely that these properties change
separately. As seen from Table II the value of the retar-
dation time is the same for all samples and all condi-
tions. Although discussion of the structural aspects of
the network deformation is unlikely to be very produc-
tive in terms of this phenomenological approach, nev-
ertheless, some simple conclusions can be proposed.
First, it is be seen that in oriented PE, the interfibrillar
non-crystalline material is always much more stretched
than the intrafibrillar regions and the total Young’s mod-
ulus of material is determined mostly by value ofE1. As
mentioned above, the value ofE2 (as for any polymer
network) is proportional to absolute temperature and
the density of the interfibrillar network. It is evident
from our temperature measurements that the viscosity
η1 has the same dependence on temperature asE2. Also,
because the retardation time, i.e. the ratio ofη1 to E2 is
the same for samples B and C, the molecular weights of
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which differ significantly, it appears that the viscosityη1
and the modulusE2 depend in a complementary fash-
ion on molecular weight of the polymer as well as with
the temperature of experiment. It is to be concluded,
therefore, that the only way to change the kinetics of
recovery is to change separately the structures of the
interfibrillar and intrafibrillar non-crystalline regions.

4. Conclusions
In this paper particular emphasis has been given to un-
derstanding the time dependent recovery behaviour of
oriented PE. To examine the validity of simple mechan-
ical models it has been found instructive to describe the
recovery kinetics in terms of the time dependence of
strain rate. It has been shown that in spite of significant
differences in recovery strain level, over a wide range
of the structural variations and experimental conditions
the recovery kinetics are not affected.

Analytical relationships for the time dependence of
strain and strain rate of creep at low applied stresses as
well as for recovery have been developed in terms of
the two process model. The values of the activation pa-
rameters for the low stress process as well as the elastic
constants of the model have been obtained by accu-
rate fitting of the time dependent creep and recovery
data. It has also been shown that more exact estimates
of the activation parameters of the high stress process
can be obtained by a combination of time dependent
and equilibrium creep data. Quantitative relationships
between the parameters obtained show that the sec-
ond arm of the model is associated with the microfibril
rather than with the crystalline regions only. The time
dependent recovery behaviour is therefore determined
by the relationship between the elasticity of the intrafib-
rillar non-crystalline regions and the viscous properties

of the interfibrillar network. The present results sug-
gest that these properties change in such a way that
even for significant transformations of structure such
as those caused by hot drawing the recovery kinetics
of oriented PE samples which have been carefully an-
nealed to stabilise their structure, is very similar.

Acknowledgements
Support of the work at the IRC in Polymer Science
and Technology, the University of Leeds by the Royal
Society/NATO Postdoctoral Fellowship Programme is
gratefully acknowledged.

References
1. M . A . W I L D I N G andI . M . W A R D, Polymer22 (1981) 870.
2. I . M . W A R D and M . A . W I L D I N G , J. Polym. Sci., Polym.

Phys. Ed. 22 (1984) 561.
3. M . A . W I L D I N G andI . M . W A R D, J. Mater. Sci. 19 (1984)

629.
4. J. D U X B U R Y andI . M . W A R D, ibid. 22 (1987) 1215.
5. O. D. S H E R B Y andJ. E. D O R N,J. Mech. Phys. Solids6 (1956)

145.
6. G. A . J. O R C H A R D, G. R. D A V I E S andI . M . W A R D,

Polymer25 (1984) 1203.
7. G. C A P A C C I O andI . M . W A R D, Colloid and Polym. Sci. 260

(1982) 46.
8. L . R. G. T R E L O A R, “The Physics of Rubber Elasticity,” 3rd ed.

(Clarendon Press, Oxford, 1975) p. 271.
9. J. E. D E N N I S, J R. andD. J. W O O D S, in “New computing

Environments: Micro-computers in Large Scale Computing,” edited
by A. Wouk (SIAM, 1987) pp. 116–122.

10. S. A . G O R D E Y E V andI . M . W A R D, to be published.
11. M . G. Z A I T S E V, S. A . S T R E M Y A K O V and S. A .

G O R D E Y E V, Int. J. Polym. Mater. 22 (1993) 25.

Received 17 June 1998
and accepted 24 February 1999

4773


